等差数列通项公式
等差数列是常见的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个差,公差常用字母d表示。
等差数列通项公式:
an=a1+(n-1)d
(1)、前n项和公式为:sn=na1+n(n-1)d/2或sn=n(a1+an)/2
(2)、以上n均属于正整数。
等差中项:一般设为ar,am+an=2ar,所以ar为am,an的等差中项,且为数列的平均数。
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈n*,且m+n=p+q,则有am+an=ap+aq,sm-1=(2n-1)an,s2n+1=(2n+1)an+1,sk,s2k-sk,s3k-s2k,…,snk-s(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
说明:
1、对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d,从第一项a1到第n项an的总和,记为Sn。
2、按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。
例如:1,3,
通项公式推导:
a2-a1=d;a3-a2=d;a4-a3=d……an-an-1=d,将上述式子左右分别相加,
得出an-a1=(n-1)*d→an=a1+(n-1)*d。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2
Sn=[n*(a1+an)]/2
Sn=d/2*n2+(a1-d/2)*n
注:以上n均属于正整数。
等差数列公式包括:求和、通项、项数、公差......等
等列公式[1]:an=a1+(n-1)d,(n为正整数)
a1为首项,an为第n项的通项公式,d为公差。
前n项和公式为:Sn=na1+n(n-1)d/2,(n为正整数)
Sn=n(a1+an)/2 注:n为正整数
若n、m、p、q均为正整数,
若m+n=p+q时,则:存在am+an=ap+aq
若m+n=2p时,则:am+an=2ap
若A、B、C均为正整数,B为中项,B=(A+C)/2
也可推导得Sn=na1+nd(n-1)/2
第n项的值an=首项+(项数-1)×公差
an=am+(n-m)d ,若已知某一项am,可列出与d有关的式子求解an
例如 a10=a4+6d或者a3=a7-4d
前n项的和Sn=首项×n+项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)
项数=(末项-首项)÷公差+1
末项=首项+(项数-1)×公差
当数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,前n项的和=(首尾项相加×项数)÷2
等差数列中项公式2an+1=an+an+2其中{an}是等差数列
等差数列的和=(首项+末项)×项数÷2
推荐文章:
- ·幼儿园入园需要什么手续
- ·叛逆儿子暴躁老妈的解决方法
- ·叛逆期男孩子最好的教育方法
- ·安身立命是什么意思
- ·上海适合小朋友玩的地方有哪些
- ·正确的家庭教育理念和方法
- ·等差数列通项公式
- ·单亲妈妈控制不住对孩子发脾气
- ·北京哪些地方适合带孩子去
- ·开封适合小孩玩的地方有哪些
- ·孩子叛逆期的心理疏导方法
- ·七绝圣手指的是唐代著名诗人
- ·幼儿入园家长须知
- ·厦门适合孩子玩的地方攻略
- ·福州有什么适合小孩子玩的地方吗
- ·二十四桥是什么典故
- ·我的女儿13岁了我该怎么教育
- ·哪里适合带孩子旅游
- ·卖油翁原文及翻译
- ·战国策是一部什么体史书
- ·让孩子听话的十个方法
- ·与自己10岁的女儿怎么沟通
- ·教育孩子最好的方法和经验
- ·最适合带孩子去旅游的地方
- ·欲上青天揽明月的上一句
- ·青春期仇视父母多久会好
- ·期颐之年是多少岁
- ·13-16岁叛逆期玩手机教育方法
- ·白堤与哪位诗人有关
- ·历史名人吴均生活在哪个历史时期